KIRAN TUTORIALS

Seat No.

Std 10 (English)

Mathematics Part - II

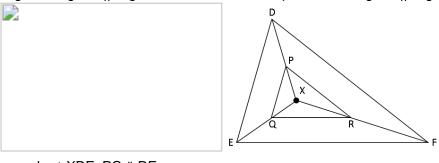
Marks 20

Time 1HRS

Chapter 1,

1

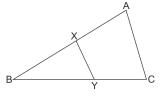
2

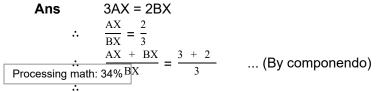

Q.1 Multiple Choice Questions

1 If in \triangle DEF and \triangle PQR, $\angle D \cong \angle Q$, $\angle R \cong \angle E$ then which of the following statements is false? a. $\frac{EF}{PR} = \frac{DF}{PQ}$ b. $\frac{DE}{PQ} = \frac{EF}{RP}$ c. $\frac{DE}{QR} = \frac{DF}{PQ}$ d. $\frac{EF}{RP} = \frac{DE}{QR}$

Ans Option b.

Q.2 Attempt the following (Activity)


1 In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.



In \triangle XDE, PQ || DE...

Ans 1) Given

1 In the adjoining figure, seg XY || seg AC, If 3AX = 2BX and XY = 9 then find the length of AC.

6

```
\begin{array}{l} \frac{AB}{BX} = \frac{5}{3} \\ \text{In } \triangle \text{ BCA and } \triangle \text{ BYX}, \\ \angle B \cong \angle B \\ \angle \text{BCA} \cong \angle \text{BYX} \qquad \dots \text{ (Corresponding angles)} \\ \hline & \triangle \text{ BCA} \sim \triangle \text{ BYX} \qquad \dots \text{ (A-A test of similarity)} \\ \hline & \frac{BA}{BX} = \frac{AC}{XY} \\ \hline & \frac{5}{3} = \frac{AC}{9} \\ \hline & 3 \times \text{AC} = 45 \\ \hline & AC = 15 \end{array}
```

2 Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle?

∴ 23 = b1b2

As 2 < 3

- \therefore b₁ < b₂
- \therefore base of the smallest triangle = b₁ = 6cm.
- ∴ 23 = 6 b2
- \therefore b₂ × 2 = 3 × 6
- \therefore b_{2 = 3 × 62}
- ∴ b₂ = 182
- \therefore b₂ = 9 cm.
- : Corresponding base of bigger triangle is 9 cm.

Q.4 Answer the following (Non textual)(Any One)

- 1 A model of a ship is made in the ratio 1 : 200.
 - i) The length of the model is 4 m. calculate the length of the ship.
 - ii) The area of the deck of the ship is 1,60,000 m². Find the area of the deck of the model.

Ans Here, the k factor is 1 : 200.

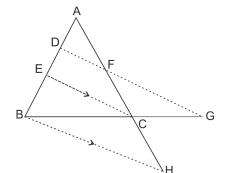
- ... A ship and its model are similar figures.
- ∴ their corresponding sides are proportional The model of a ship is made in the ratio 1 : 200.
 the length of the model 1

$$\frac{\text{the length of the ship}}{\text{the length of the ship}} = \frac{1}{200}$$

$$\frac{4}{\text{the length of the ship}} = \frac{1}{200}$$

 \therefore the length of the ship = 4 \times 200

The ratio of the areas of similar figures is equal to the ratio of the squares of their corresponding sides


the area of the deck of the model _ 1

the area of the deck of the ship
$$(k)^2$$

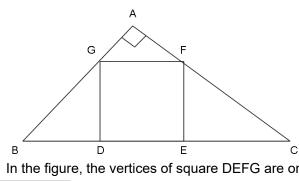
the area of the deck of the model $= \frac{1}{(200)^2}$

$$\therefore \text{ the area of the deck of the model} = \frac{1 \times 16000}{200^2}$$

$$= 1 \times 16000040000 = 4m^2$$

Processing math: 34%

In the given figure, 2AD = BD, E is mid-point of BD and F is mid-point of AC and EC || BH. Prove that : i) DF || BH


ii) AH = 3 AF.

Ans Given - E is the mid-point of BD and F is mid-point of AC also 2 AD = BD and EC ∥ BH.

	To Prove : i) DF ∥ BH	
	ii) AH - 3 AF	
	Proof : i) E is the mid-point of BD (give)	
<i>.</i> .	2DE = BD	(1)
	Also, 2AD = BD	(2)
	From (1) and (2),	
	2 DE = 2 AD	
	DE = AD	
	Also F is the mid-point of AC	(given)
<i>.</i> .	DF EC	(3)
	Also EC BH	(4)
	From (3) and (4)	
∴	DF BH	(proved)
	Now E is mid-point of BD and	(given)
	EC BH	(given)
	C is mid-point of AH	
	FC = CH	(5)
	But F is mid - point AC.	
	AF = FC	(6)
	From (5) and (6), we get	
	FC = AF = CH	
	AF = 13 AH	
	3 AF = AH	
	AH = 3 AF	

Q.5 Answer the following

1

4

Ans In \triangle GBD and \triangle FGA $\angle GBD \cong \angle FGA$... (Corresponding angles) $\angle GDB \cong \angle FAG (90^\circ)$ \triangle GBD ~ \triangle FGA *.*.. ... (1) (A.A. test of similarity) In \triangle FGA and \triangle CFE $\angle FAG \cong \angle CEF$... (90°) $\angle GFA \cong \angle FCE$... (Corresponding angles) \triangle FGA ~ \triangle CFE ... (2) (A.A. test of similarity) ... \triangle GBD ~ \triangle CFE ... (from (1) & (2)) :. GBCF = BDFE = GDCE... (C. S.S.T.) BDFE = GDCE $BD \times CE = GD \times FE$... (3) □ DEFG is a square ... (given) *:*.. $GD \cong FE \cong DE$ \dots {sides of square} \dots (4) BD×CE = DE×DE *:*.. (from 3 & 4) $BD \times CE = (DE)^2$... hence proved :. Q.6 Answer the following 1 F D B In the given figure. DE || BC. i. If AD = x, DB = x - 2, AE = x + 2 and EC = x - 1, find the value x. ii. If DB = x - 3, AB = 2x, EC = x - 2 and AC = 2x + 3, find the value of x. In the given figure, DE || BC Ans i) AD = x, DB = x - 2, AE = x + 2, EC = x - 1 In \triangle ABC, DE || BC $\ddot{}$:. ADDB = AEEC (By cross xx - 2 = x + 2 x - 1 multiplication) x(x - 1) = (x - 2))(x + 2) $x^2 - x = x^2 - 4$ - x = - 4 x = 4 ii) DB = x - 3, AB = 2xEC = x - 2, AC = 2x + 3 $In \triangle ABC$:. DE || BC ABDB = ACEC :. 2x x - 3 = 2x + 3x - 2Processing math: 34% cross multiplication

3

:.

Question Answer Paper

2x (x - 2) = (2x + 3) (x - 3) $2x^{2} - 4x = 2x^{2} - 6x + 3x - 9$ $2x^{2} - 4x - 2x^{2} + 6x - 3x = -9$ -x = -9x = 9

Processing math: 34%